Струшко Аматерско Астрономско Друштво
Добредојдовте на официјалниот форум на СААД!!!

Зачленете се или пријавете се и уживајте во престојот.

Join the forum, it's quick and easy

Струшко Аматерско Астрономско Друштво
Добредојдовте на официјалниот форум на СААД!!!

Зачленете се или пријавете се и уживајте во престојот.
Струшко Аматерско Астрономско Друштво
Would you like to react to this message? Create an account in a few clicks or log in to continue.
Месечина
Мај 2024
ПонВтоСреЧетПетСабНед
  12345
6789101112
13141516171819
20212223242526
2728293031  

Calendar Calendar

Анкета
online survey
Набљудување на метеорскиот дожд Ориониди

Вто Окт 12, 2010 7:21 pm by DarkAngelMKD

Ѕвездена еволуција 50254_146336615409267_661_n

На 21 Октомври Струшкото Аматерско Астрономско Друштво организира набљудување на метеорскиот дожд Ориониди.Локацијата на овој настан ќе биде Автокампот АС - Струга,со почеток од 00:00 часот па се до раните утрински часови,нормално ако не послужи времето Very Happy

Comments: 0

Latest topics
» Жртви на вселенските истражувања
Ѕвездена еволуција EmptyНед Окт 24, 2010 4:06 pm by DarkAngelMKD

» една забелешка
Ѕвездена еволуција EmptyЧет Окт 14, 2010 5:49 pm by anti-spam-master

» Четири телескопи за онлајн сликање на ѕвезди
Ѕвездена еволуција EmptyСре Окт 13, 2010 10:45 pm by DarkAngelMKD

» Астрономијата го одбележа дваесеттиот век
Ѕвездена еволуција EmptyВто Окт 12, 2010 10:41 pm by DarkAngelMKD

» Слика од јадрото на Халеевата Комета
Ѕвездена еволуција EmptyВто Окт 12, 2010 10:20 pm by DarkAngelMKD

» Набљудување на метеорскиот дожд Ориониди
Ѕвездена еволуција EmptyВто Окт 12, 2010 7:21 pm by DarkAngelMKD

» Ауригиди
Ѕвездена еволуција EmptyПон Окт 11, 2010 9:22 pm by DarkAngelMKD

» Ориониди
Ѕвездена еволуција EmptyПон Окт 11, 2010 8:42 pm by DarkAngelMKD

» Персеиди
Ѕвездена еволуција EmptyПон Окт 11, 2010 8:33 pm by DarkAngelMKD

Statistics
Постојат b>12 регистрирани членови
Најновиот регистриран член е Marija

Нашите членови се испратиле точно 152 мислења in 140 subjects
Кој е он-лајн?
In total there is 1 user online :: 0 Регистрирани, 0 Скриени и 1 Гост

Никој

Најмногу членови кои го посетиле форумот воеднаш се 22 во Пет Окт 08, 2021 11:35 pm
RSS feeds


Yahoo! 
MSN 
AOL 
Netvibes 
Bloglines 


Social bookmarking

Social bookmarking reddit      

Bookmark and share the address of Струшко Аматерско Астрономско Друштво on your social bookmarking website

Bookmark and share the address of Струшко Аматерско Астрономско Друштво on your social bookmarking website


Ѕвездена еволуција

Go down

Ѕвездена еволуција Empty Ѕвездена еволуција

Пишување by DarkAngelMKD Вто Окт 05, 2010 12:58 am


Ѕвездена еволуција 600px-%D0%A1%D0%BE%D0%BD%D1%87%D0%B5%D0%B2_%D0%B6%D0%B8%D0%B2%D0%BE%D1%82

Ѕвездена еволуција е процес со кој ѕвездата претрпува редица на радикални промени во текот на своето постоење. Во зависност од масата на ѕвездата, нејзиниот животен век варира од неколку милиони години (за најмасивните) до трилиони години (за помалку масивните), значително повеќе од староста на универзумот.
Ѕвездената еволуција не се проучува преку набљудување само на една ѕвезда: повеќето ѕвездени промени се случуваат премногу бавно за да бидат забележани, понекогаш и повеќе векови. Затоа астрофизичарите ја откриле еволуцијата на ѕвездите преку набљудување на бројни ѕвезди, секоја на различен степен од развој, и преку симулација на структурата на ѕвездите со помош на компјутер.

Раѓање

Ѕвездената еволуција започнува со гравитациски колапс на џиновски молекуларен облак. Типичните џиновски молекуларни облаци се нерамни и широки околу 100 светлосни години (9,5 × 1014 km) кои содржат до 6 милиони сончеви маси (1,2 × 1037 kg). При колапсот, џиновскиот молекуларен облак се разделува на помали делови. Во секој од овие делови, гасот ослободува гравитациска потенцијална енергија како топлина. Како што растат температурата и притисокот, деловите се згуснуваат во ротирачки сфери од суперврел гас познат како протоѕвезда.[1]
Протоѕвездите со маса помала од околу 0,08 M⊙ (1,6 × 1029 kg) никогаш не постигнуваат доволно висока температура за да се случи нуклеарна фузија на водородот. Тие се познати како кафеави џуџиња. Кафеавите џуџиња со маса поголема од 13 маси на Јупитер (2,5 × 1028 kg) имаат фузија на деутериум. Некои астрономи само овие небесни тела ги сметаат за кафеави џуџиња. И двата типа, со фузија на деутериум или не, светат пригушено и умираат многу бавно, ладејќи се во текот на повеќе стотици милиони години.
Кај помасивна протоѕвезда, температурата во јадрото конечно ќе достигне 10 мегакелвини, и ќе започне реакција меѓу протоните, при што јардата на водородотот се спојуваат, најпрвин во деутериум а потоа и во хелиум. При ѕвезди малку над 1 M⊙ (2,0 × 1030 kg), циклусот на фузија произведува значителен дел на енергија. Почетокот на нуклеарната фузија многу брзо доведува до хидростатичка рамнотежа при што енергијата ослободена од јадрото врши радијациски притисок ја става материјата на ѕвездата во рамнотежа, и спречува понатамошен гравитациски колапс. На овој начин ѕвездата брзо се развива до стабилна состојба, започнувајќи ја главната фаза од нејзината еволуција.
Мало, релативно студено црвено џуџе со мала маса бавно го троши водородот и останува во главната фаза стотици милијарди години, додека масивниот врел суперџин излегува од главната фаза после само неколку милиони години. Ѕвездите со средна големина како нашето Сонце остануваат во главната фаза околу 10 милијарди години. За нашето Сонце се смета дека е на средина од својот век на постоење, па според тоа се наоѓа во главната фаза.

Зрелост

После милиони и милијарди години, во зависност од почетната маса на ѕвездата, постојаниот процес на фузија на водородот во хелиум предизвикува зголемување на хелиумот во јадрото. Поголемите и поврелите ѕвезди побрзо произведуваат хелиум од постудените и помали ѕвезди.
Натрупувањето на хелиум во јадрото, кој е погуст од водородот, предизвикува гравитациско собирање во себе и постепено зголемување на процентот на фузија. Треба да се постигнат повисоки температури за да се издржи ова зголемување на гравитациското собирање и да се зачува стабилна состојба.
Конечно, кога јадрото ќе ги потроши своите резерви на водород, и без надворешен притисок кој го создава фузијата на водородот, тоа се собира сè додека електронската дегенерација да стане доволна за да се спротивстави на гравитацијата, или пак јадрото да стане доволно врело (околу 100 мегакелвини) за да започне со фузија на хелиумот. Што од ова ќе се случи прво, зависи од масата на ѕвездата.

Ѕвезди со мала маса

Што се случува откако ѕвезда со мала маса ќе престане да произведува енергија преку фузија не се знае: се смета дека универзумот е стар околу 13,7 милијарди години, што е помалку отколку што е потребно да престане фузијата во таква ѕвезда. Оваа теорија се базира врз компјутерско моделирање кое го прават астрономи како Дон Ванденберг.
Ѕвезда помала од околу 0,5 соларни маси никогаш нема да може да врши фузија на хелиумот, дури и откако во јадрото ќе се потроши сиот водород. Едноставно кај нив нема доволно ѕвездена маса за да извршат притисок врз јадрото. Вакви се црвените џуџиња како на пример Proxima Centauri, од кои некои живеат илјадници пати подолго од нашето Сонце. Неодамнешните астрофизички модели сугерираат дека црвено џуџе со соларна маса од 0,1 може да остане во главната фаза речиси шест трилиони години, а во наредните неколку стотици милијарди години бавно да се претвора во бело џуџе. Ако јадрото на ѕвездата стагнира (како што се смета дека е случај со нашето Сонце), тоа сепак ќе биде опколено со слоеви од водород. Сепак, ако ѕвездата е целосно конвективна (како во случај на ѕвездите со најмала маса), нема да има такви слоеви. Ако пак ги има, ќе се претвори во црвен џин каков што е случајот со ѕвездите со средна големина опишан подолу, но никогаш нема да изврши фузија на хелиумот како другите.

Ѕвезди со средна големина

Забрзаната фузија во слојот со водород веднаш над јадрото, предизвикува проширување на ѕвездата. Бидејќи ова ги турка надворешните слоеви подалеку од јадрото и го намалува гравитациското влијание врз нив, тие се шират побрзо отколку што се произведува енергија, а тоа предизвикува ладење со што ѕвездата станува поцрвена отколку во главната фаза. Ваквите ѕвезди се познати како црвени џинови.
Според Херцшпрунг-Раселовиот дијаграм (Hertzsprung-Russell diagram), црвен џин е голема ѕвезда која не е во главната фаза, со ѕвездена класификација K или M. Примери за вакви ѕвезди се Алдебаран од соѕвездието Бик и Арктурус од соѕвездието Мечкар.
Ѕвезда со големина до неколку соларни маси ќе создаде хелиумско јадро, кое е поддржано од притисокот на електронската дегенерација, опколено со слоеви кои сè уште содржат водород. Неговата гравитација го згуснува водородот во слој веднаш над него, што предизвикува побрза фузија отколку што водородот би ја вршел во главната фаза на ѕвезда со иста маса. Ова пак предизвикува ѕвездата да стане посветла (од 1.000 – 10.000 пати посјајна) и да се шири, а степенот на ширење го надминува зголемувањето на светлината, со што се постигнува намалување на ефективната температура.
Откако ќе се потроши водородот од јадрото, јадрото го апсорбира хелиумот, поради што јадрото се собира уште повеќе. Тоа пак доведува преостанатиот водород да се стопи уште побрзо. На крајот започнува фузија на хелиумот (што вклучува троен-алфа процес) во јадрото. Кај ѕвезди со поголема соларна маса од 0,5 притисокот на изменетите електрони може да ја одложи фузијата на хелиумот милиони години или десетици милиони години; а кај помасивни ѕвезди, комбинацијата од хелиумско јадро и слоевите значи дека таквиот притисок не е доволен за значително да го одложи процесот.
Кога температурата и притисокот во јадрото ќе можат да запалат хелиумска фузија во јадрото, ќе се појави хелиумски блесок доколку во јадрото има доволно притисок од дегенерација на електроните; кај помасивни ѕвезди каде јадрото нема доволно притисок, палењето на хелиумската фузија започнува релатинво незабележливо. Дури и да се појави хелиумски блесок, времето на ослободување на енергијата е кратко, па видливите надворешни слоеви на ѕвездата се релативно непопречени.Енергијата што се ослободува преку фузија на хелиумот предизвикува проширување на јадрото, а хидрогенската фузија на надворешните слоеви се забавува, со што вкупното производство на енергија се намалува. Затоа ѕвездата се собира, постепено се собира во радиус и ја зголемува површинската тепмература.
Откако ѕвездата ќе го потроши хелиумот во јадрото, фузијата продолжува во лушпата околу врелото јадро од јаглерод и кислород.
Промените во енергијата што зрачи предизвикуваат ѕвездата да ја смени големината и температурата за одреден период. Енергијата што зрачи е со пониска фреквенција, а ова е придружено од зголемување на губењето на масата преку ѕвездени ветрови и силни пулсирања. Ѕвездите во оваа фаза се наречени ѕвезди од доцен период, ѕвезди OH-IR или ѕвезди од типот на Мира, во зависност од нивните карактеристики. Потиснатиот гас е релативно богат со тешки елементи создадени во ѕвездата, и делумно збогатен јаглерод или кислород во зависност од типот на ѕвездата. Гасот создава лушпа која се лади како што се оддалечува од ѕвездата, дозволувајќи им на честичките прашина и молекулите да се формираат.
Реакцијата на горење на хелиумот е крајно осетлива на температура, и предизвикува голема нестабилност. Се создава огромно пулсирање, кое на крајот им дава на надворешните слоеви на ѕвездата доволно кинетичка енергија, со што се формира планетарна маглина. Во центарот на маглината останува јадрото на ѕвездата, која се оладува и се претвора во мало но цврсто бело џуџе.

Масивни ѕвезди

Кај масивните ѕвезди, јадрото е доволно големо за да започне хелиумска фузија и пред да се измени притисокот на дегенеративните електрони. Според тоа, кога овие ѕвезди се шират и се ладат, не сјајат толку колку ѕвездите со помала маса. Сепак, тие на почеток сјајат многу повеќе од ѕвездите со помала маса, и сè уште се посјајни од црвениот џин што се создава од помалку масивните ѕвезди. Овие ѕвезди се познати како супер џин.
Екстремно масивните ѕвезди (со маса поголема од 40 соларни маси), кои се многу светли и имаат многу брзи ѕвездени ветрови, масата ја губат многу брзо поради радијацискиот притисок и ги губат своите слоеви пред да дојдат во состојба да се претворат во црвен суперџин, и според тоа имаат екстремно висока површинска температура (и сино-бела боја) од нивната главна фаза па натаму. Не постојат ѕвезди со маса поголема од околу 120 соларни маси, бидејќи во таков случај надворешните слоеви ќе бидат истерани со екстремната радијација. Иако ѕвездите со помала маса не ги горат брзо надворешните слоеви, тие можат исто така што избегнат да се претворат во црвен џин или во црвен суперџин ако се во бинарен систем доволно блиску за да може придружната ѕвезда да ги отстрани слоевите како што се шират, или ако ротираат доволно брзо па конвекцијата да се протега од јадрото до површината.

Кај масивните ѕвезди, притисокот на дегенерираните електрони не е доволен за да го запре колапсот, па како што се собираат потешки елементи во центарот, потешките елементи се палат, привремено запирајќи го колапсот. Ако јадрото на ѕвездата не е премногу масивно (ако е помало од 1,4 соалрни маси, вклучувајќи ја и масата што е изгубена до овој период), тогаш може да се претвори во бело џуџе (најверојатно опколено со планетарна маглина) како што е опишано погоре за ѕвездите со помала маса, со таа разлика што ова бело џуџе ќе биде составено главно од кислород, неон и магнезиум.
Ѕвезда со премасивно јадро која не може да се изври претоврање на неонот во кислород и магнезиум, ќе претрпи колапс на јадрото пред да дојде до фазата на фузија на потешките елементи. Ова може да предизвика забележлив ефект на изобилство на елементи и изотопи кои се исфрлени како супернова.
Откако еднаш процесот на ѕвездена нуклеосинтеза ќе дојде до фазата на железо-56, продолжувањето на овој процес одзема енергија. Ако масата на јадрото ја надмине границата од 1,4 соларни маси, притисокот на дегенеративните електрони нема да може да ја поддржи тежината наспроти силите на гравитација, и јадрото наеднаш ќе се најде во катастрофален колапс и ќе формира неутронска ѕвезда или (во случај на јадро со околу 0,7 соларни маси), црна дупка. Во овој процес кој не е целосно реконструиран, дел од гравитациската потенцијална енергија која е ослободена од колапсот на јадрото, ќе се претвори во супернова од тип Ib, тип Ic, или тип II. Се знае дека колапсот на јадрото произведува огромен бран од честички неутрино, како што е забележано при случајот со суперновата SN 1987A.
Иако ѕвездите црвен џин кои не експлодираат можат да произведат значајно количество на елементи потешки од железо користејќи ги неутроните ослободени од претходни нуклеарни реакции, изобилството од елементи кои се потешки од железо (и донекаде од некои изотопи на елементи кои имаат стабилни или долговечни изотопи) а кои се произведени при ваква реакција, се разликуваат од оние кои се произведени при супернова.
Најмасивните ѕвезди можат целосно да бидат уништени од супернова со енергија која далеку ја надминува неговата гравитациска енергетска врска. Ова ретко се случува, а е предизвикано од пар нестабилни супернова ѕвезди, а зад себе не остава црна дупка.

Ѕвездени остатоци

Откако ѕвездата ќе го изгори горивото кое го има, нејзините остатоци можат да бидат во три вида во зависност од масата што ја имала претходно.

Бело џуџе

За ѕвезда со соларна маса 1, остатоците во форма на бело џуџе се околу 0,6 соларни маси, збиени во волумен колку овој на нашата Земја. Белите џуџиња се стабилни затоа што внатрешноста ја влече гравитација и е балансирана од притисокот на дегенерираните електрони. Притисокот на дегенерираните електрони е обезбедување против понатамошна компресија, па според тоа за даден хемиски состав, белите џуџиња со поголема маса имаат помал волумен. Бидејќи не е останато гориво, ѕвездата зрачи со преостанатата топлина во вселената во наредните милијарди години.
Хемискиот состав на белото џуџе зависи од масата. Ѕвезда со неколку соларни маси ќе започне со карбонска фузија, и ќе формира магнезиум, неон и мало количество на други елементи, а на крајот белото џуџе ќе биде составено главно од кислород, неон и магнезиум, кои гарантираат дека масата не може да се намали под 1,4 соларни маси, и дека палењето на јаглеродот нема да доведе до супернова.
На крајот, она што останува се нарекува понекогаш црно џуџе. Како и да е, универзумот не е доволно стар па сè уште не постојат црни џуџиња.

Неутронска ѕвезда

Кога јадрото на ѕвездата ќе доживее колапс, притисокот ги заробува електроните, при што голем дел од протоните се претвораат во неутрони. Електромагнетните сили кои ги разделуваат нуклеите ги нема, и поголемиот дел од јадрото на ѕвездата станува цврста топка од неутрони (во некои случаи налик на џиновско јадро на атом), со надворешен тенок слој од дегенерирана материја (најчесто железо). Неутроните не се згуснуваат понатаму.
Ваквите ѕвезди се познати како неутронски ѕвезди и се екстремно мали — со радиус од околу 10 km, не се поголеми од големина на еден голем град — и се феноменално густи. Нивниот период на револуција драматично се скратува, а некои од нив се вртат со брзина од над 600 вртења во секунда. Кога магнетното поле на овие ѕвезди е во линија со нашата Земја, ние ги регистрираме како пулсари, и тоа се првите неутронски ѕвезди што се откриени.

Црна дупка

Ако масата на остатокот од ѕвездата е доволно голема, дегенеративниот притисок на неутроните е недоволен да предизвика колапс. Тогаш ѕвездените остатоци се претвораат во црна дупка. Масата која е потребна за да се случи ова не е позната со сигурност, но се претпоставува дека е меѓу 2 и 3 соларни маси.
За црните дупки зборува општата теорија на релативноста. Според оваа теорија, ни материја ни информација може да излезе од внатрешноста на црната дупка надвор кон набљудувачот, иако квантните ефекти дозволуваат отстапување од ова правило. Се смета дека постојат црни дупки во унвиерзумот, не само поради теоретските нагаѓања, туку и според астрономските набљудувања.
Но, сè уште не е познато дали е можно ѕвездата да колабира директно во црна дупка без претходно да се претвори во видлива супернова, Исто така не се знае точната разлика меѓу почетната маса на ѕвездата и остатокот како црна дупка. Потребни се уште анализи на ѕвезди кои се претвориле во супернова и на нивните остатоци за да може нешто повеќе да се каже со сигурност.
DarkAngelMKD
DarkAngelMKD
Администратор
Администратор

Број на мислења : 145
Join date : 2010-10-03
Age : 34
Местолокација : Струга

http://www.saad.con.mk

Вратете се на почетокот Go down

Вратете се на почетокот


 
Permissions in this forum:
Не можете да одговарате на темите во форумот